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ABSTRACT

"An algorithm for multiple target tracking and data
correlation is described. A general description of the
problem and solution is first given. More specific
discusssions on tracking with a passive infrared sensor then
follow. An example is presented to illustrate the trade-off
between algorithm complexity, performance, and processing

requirements.
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I. INTRODUCTION

Multiple target tracking is a classical problem with
both civilian and military applications. Air traffic control
is a notable c¢ivilian application area. Military applications
range from air, ocean, and ground surveillance to missile de=-
fense. Due to a drastic increase in target density in recent
years, this subject area has been a center of discussions in
the open literatures [1]-[6] and company reports [7]-[10].
Interested readers can find special sessions in the conference
proceedings of recent IEEE Conferences on Decision and Control
and several articles for specific applications in the IEEE
Transactions on Aerospace and Electronic Systems.

Motivated by the application for exoatmospheric
Ballistic Misslle Defense (BMD) in an extremely high target
density environment, we have studied and obtained an alg» rithm
for multiple target tracking. References [7]-[10] contain
specific algorithms for exo-BMD applications. Due to the
nature of this pvoblem it is often referred to as the scan-
to-scan correlation (SSC) problem in the BMD community.
Although our algorithm bears this specific application in
mind, its concept is rather general and it can be easily ex-
tended for a general multiple target tracking and data

correlation application. Our algorithms shares some features

with those in the references, it also has some unique




characteristics.

We will point out differences between our algorithm
and those of [7]~[10]) whenever it is appropriate. In this
section, we will briefly review the open literatures in this
area. Reference {1] is a recent and complete description of a
multiple target tracking algorithm. Our mild reservations
about this paper are (1) it does not consider the effect of
limited sensor resolution and (2) it attempts to model every
stage of the target-tracking process such as the a priori
target distrioution and the probability of a given number of
detections occuring where in reality, these probabilities may
only be vaguely known, Reference [2] is a survey article
References [3] and (4] discuss the problem of track mainte-
nance in a dense target (or cluttered) environment. wiaat is
missing is a critical stage of the process, track initiation.
The subject of track initiation is covered in {1] and {5].
Reference [6] discusses a probabilistic data association
scheme which can be shown to be a special case of the al-
gorithm discussed in [3]-[4], We will point out more spe-
cifics related to those approachs in the next sections.

This report is organized as follows. The next
section will give a very general discussion of the hypothesis V*ﬁ

tree approach to the multiple tracking problem. Section 3

contains details of our algorithm, This algorithm attempts to




realize the approach discussed in the section 2 whenever it ig
determined feasible. An example illustrating the algorithm
discussed in this report is given in Section 4, A summary is
given at the Section &. Two appendices, discussing the
polynomial fit formulaes and the batch estimator used in this

report, are given at the end,




I1. GENERAL DISCUSS1ON

The multiple target tracking problem can be divided
into two phases. The first phase is track initiation and the
second phase is track maintenance. They are discussed indi-

vidually below.
2.1 Track Initiation

Consider the case of a scanning sensor, The first
and second scan produce N; and N, detections, respectively. G
The problem is to associate the two sets of detections to form
min(Ni,N.) number of track files. Notice that we have assumed
that N, # N,. This can be caused by (1) imperfect detection
and resolution, (2) emergence of new targets in the second
scan,; and (3) targets leaving the sensor field of view hefore
the secvond scan. In the following, an approach for track
initiation with X scans of data is described.
Let 7k denote all the measurements (N) collected

during k-th scan, 1.e.,
2 = 121(%); za(k),...,zy(k) } (2.1)

Let 7% denote the set of measurements up to and including

the k-th scan, 1i.e.,

zk = {z;: i=1,..., k] (2.2)
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For simplicity, we assume that N 1s the number of detections
for all 2x's. Assume also that the sensor has perfect tar-

get detection. When this is not true, one has to enumerate

more hypotheses to account for all possibilities. With Zk,
there can be NX combinations of measurement sequences and
each measurement seguence represents a possible track. Let
each possible combination be denoted by a hypothesis,

Hmk(k) which is defined by

Hmk(k) = {§n1(1)’En2(2)""'3nk(k)} (2.3)

Suppose that a tracking flilter is applied to process each

possible measurement sequence. The a posteriori hypothesis

probabilicy of Hmk(k) being true can be computed recur-

sively using

plz, (X)/H_ (x-1),2%° 1)
o DKy K k-1 k-1
P(H (k)/27) = — - P(H,  (k=1)/2""")

m k- m
k P(an(k)/z ) k-1 (2.4)

k~1
where p(zn (k)/Hm (k-1), 2 )

is the probability density
k k-1

of the residual from the tracking filter using v (k-1)

1

x-1
and znk(k)*. The above equation can be derived as a

density function is given in Refs. [1], [2] and [5] in which
situations including a priori target distribution and the

probability of a given number of detections were also con-
sidered.
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special case of the results presented in (!3],[14}. The final
set of tracks (total N) can be chosen as those N feasible

hypotheses with the largest hypothesis probabilities, i.e,,
max {P(Hp, (k)/2K); mp = 1,...,NK] (2.5)
{N; g (KIEF ]

where the feasible set, F‘, is the restriction that each

measurement at a given time can be used only once, i.e.,
F = lin O By () v Hy (k) = ¢ for 1 # j}

The computational requirement of the above method is
clearly non-trivial. In fact, the above optimization

problem defines a N-dimensional assignment problem. A well

known solution to the 2-dimensional assignment problem is the
Hunogarian algorithm [15]. To the best of the authors®
knowledge, the N-dimensional extension of the Hungarian al-
gorithm is not yet available.

In many applications, one may be able to pre-cluster
the detections so thalt search over the entire set of de-
tections is not necessary. Other physical c¢onstraints can
sometimes be imposed to reduce the search requirements de-
pending upon given systems and applications.

A similar approach using a maximum likelihood method

was described in [5] in which the multidimensional search




problem was reduced to a 0-! integer programming problem,

2.2 Track Continuation

Once track files have been established, the computa-
tional requirement is greatly reduced. This is because for
each track file one is only required to search the "admissi-
ble" region dictated by the covariance of the filter residual
process.

We note that a slightly modified method of the track
inititation algorithm discussed in 2.1 can be appli=d to the
track maintenance problem. That is, one establishes a new
hypothesis for each detection resident in the admissible reg-
ion, This procedure results in an exponentially growina

number of track files. One can inhibit the drowing memory and

computational regquirement by selecting a tree depth and con-
ducting a global search for a set of feasible tracks having
the highest hypothesis probabilities (egs. (2.5}, (2.6)).
Another approach is to combine a set of "most likely hypothe-
ses" growing out of the same track file using the weighted sum
of state estimates with the hypothesis probabilities as
weighting factors. This second approach ig the basis ¢f the
Bayesian tracker presented by Singer et, al. (3], [4). 1If the
depth is equal to one, i.e., one combines all admissible de-

tections at each scan, then one obtains the probabilistic data




association filter of Bar--Shalom and Tse [6]. We exmphasize
however, that the approaches of [3), [4], and [6] are suitable
for tracking in a cluttered environment and do not directly
address the multiple target tracking issue,

The concept discussed above constitutes the basis of
the hypothesis tree approach to multiple target tracking. To
exactly implement the above aigorithm however, will result in
excessively high computational recuirements. For example,
finding the optimum solution of a N-dimensional assignment
problem (for N being large) is unpractical. A suboptimal but
computaticnally more feasible solution is therefore desira-
ble. 1In the next section, we present analgorithm which is
developed specifically for ballistic missile defense applica-
tion with a passive infrared sensor. Several concepts dis-
cussed however, are useful for a larager class of multiple tar-~

get tracking and daata correlation problems. These concepts

will be identified as we move along in discussion.




iIx. ALGORITHM DESCRIPTION

3.1 1Introduction and Basic Assumptions

Consider the situation that there are Ny and Ny
detections in the rfirst and seconéd scans (or called "frames"
for an optical sensor), respectiely. 1In a simple problem for
which the target motion 1is insignificant between two scans or
the relative motion among targets 1s small {such that the tar-
get pattern is preserved), then one can apply a two~dimension-
al assignment method for correlating measurements of these two
scans.” Entries of the assignment matrix can be that of

eq. (2.4) with k=2, For Gaussian measurement vectors, one may

use the weighted distances

- -~ - I4 \\Tlr\ ’ L v ,—\\."1.. ;- o - -
glJ = (:i~<1l‘l—ij\2’) \ni.\1)‘r“j\‘)) \il(l)-—z—J(é)) (3.1)

as entries where z;(k) is the i-th measurement of the k-th
scan with measurement covariance Rj(k). Once measurement of
tws scans have been correlated, a velocity vector can be
established making the correlation with measurements of the
third frame somewhat easier. For an optical sensor measuring
line-of-sight angles, this velccity vector will initially be
limited to the angle domain while a radar sensor can give a
three dimensional velocity vector,

The tracking problem discussed in this report is

*This 1S simlilar to a two sensor measurement correlation
problem discussed in [11].




more complicated than that described above. Target motion,
density and limited sensor resolution are such that target
patterns are not preserved in successive scans. In this case,
one must apply more knowledge about the target motion dynamics
and use more scans of data to identify a string of successive
measurements representing the same target.

In the following two subsections, we will discuss
the problem of track initiation and continuation individu-~

ally. An overall description is given in Table 3.1.
3.2 Track Initiation

The most c¢rucial and difficult part of the multiple
target tracking problem is track initiation. Specifically for
the optical sensor tracking problem, the following factors
further complicate the issues:

(1) The target angular velocities vary over a wide

range of values making the acceptance cell on the

second frame large resulting in a large number of

false correlations.
(2) With angle-only (passive receiver) measurements,

the target range estimate can not be readily ob-

tained making impossible the use of precise

ballistic equations of motion as target dynamics,

In the case of radar tracking, the first point above

may still be true depending on target velocity and data rate. 2

The second point above is at least partially true since at the

initial stage, a large number of track files are false, using




TABLE 3.1

ALGORITHM DESCRIPTION

Functions
Initiation-

No. of Scans
First Frame Angular
Velocity

Prediction
Correlation

Continuation

P rediction
Search Bin Size

Correlation

Description

5-8

A Priori Knowledge for some
targets, recursively search
for parallel targets.

Oth - 3rd order polynomial

(1) Track spht
(2} Chi-square test
(3) Pattern match test

Target equation of motion or
polynomial dynamics

Filter covariance and model
error analysis

(I Track split

Py

(2} Pattern match tes
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the exact target dynamics at this time is very time consuming.
For these reasons, we use

(1) a general/parallel search scheme for reducing the
number of false correlations and

(2) a polynomial function in each angle domain as target
dynamics to simplify calculations.

Furthermore, a sliding window scheme is employed to initiate
tracks for new detections in each frame. It is important
to note that this is an iterative rather than recursive method
and data from many frames must be saved.

The track initiation logic is illustrezted in Fig,
3.1, We use the following steps to illustrate the general and
parallel search scheme,

{1) For a given detection in the first frame {(called an
initiator}, draw an acceptance region centered at
this detection. Detections on the second frame
which fall into this region form potential tracks,
The size of the initial acceptance rvegicn is doter-—
mined by the maximum target angular velocity.
Usually a large number of potential tracks result
for one given initiator.

(2) Apply the straight line extrapolation scheme (see
Appendix A) to extend all potential tracks into the
third frame., The size of the acceptance region at
the third frame is determined by model and measure-
ment errors of the linear extrapolation. This
acceptance region size is usually much smaller than
that of the first step above.

(3) Apply a second order polynomial (see Appendix A) to
extend tracks into the fourth frame. Similarly, the
acceptance region size further reduces. Tracks
which do not receive a detection in their acceptance
region will be dropped. Tracks receiving multiple
measurements in their acceptence reqion will be
split,

12
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TR-643(3.1) |

- Pick up a Detaction
In the First Frame

T
Move 5-7 Frames

Using General or
Parallel Search

Preliminary Trimming of
Track Fites Using
Chi-square Thresholding

further Trimming Using
Pattern Match Method

All Detections
In the 1st
Frame?

Apply Track Continuation
> Method to Move Files +
To the Newt Frame

There any Apply the
Detections at 2nd Yes Initiation
Frame which are not Algorithm
Correlated?

Fig. 3.7. Track initiation logic.




(4) Continue to a total of 5 to B frames depending upon
the target density and scenario. At the end of this
stage, usually only a few potential tracks remain.
Final choices of tracks are selected using a glebal
polynomial fit. Those tracks witn weighted residu-
ais (Chi-squares) below a threshold will all be re-
tained. This completes the general search for an
initiator.

(5) Go back to the first frame, assuming that targets in
the neighborhood of the initiator will travel in
nearly the same direction; one therefore only has to
search for detectiocons in the successive frames in
parallel with the track(s) established with this
iniciator. This step greatly reduces the computa-
tional and memory requirements. This cstep is called
parallel search.

{6) Once all parallel tracks have been found, go back to
the first frame, find another detection which has
not been included in any tracks to use as a new
initiator for general search.

(7) Repeat until all detections of the first frame have
been exhausted.

Once the initial correlation described above has
been completed, one can trim track files by applying a n-th
order polynomial (n is determined by a particular application)
fit to measurements of a file and reject those files with
excessively high "chi-square" values. A third correlation
method listed in Table 3.1 under track initiation is called
"pattern match test". This test is the same as the one used
in the track continuation., We therefore defer its explanation
until the next subsection,

The above procedure is applied in a sliding window

fashion so that measurements not included in the track file

14
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are used to initiate new tracks. This is illustated in Fig.
3.2.
3.3 Track Céntinuation

The track initiaticn process correlates measurements
over 5 to 8 frames to produce track files using data of all
frames (therefore a smoothing process). The track continua-
tion stage carn be a traditional prediction, correlation and
updating process. As shown in Table 3,1, the prediction step
may use either target equations of motion or polynomial
dynamics for reducing the computational burden. In the
exoatmospheric BMD application, we have found that the use of
a precision tracking filter with the complete target equations
of motion greatly enhances the performance. We have
implemented both the extended Kalman filter and the batch
filter described in [18] for track continuation. The batch
filter is also briefly reviewed in Appendix B for the purpose
of quick reference.

We use Figure 3.3 to illustrate some typical situa-
tions encountered in the track continuation process. As a
track moves along, if multiple detections are encounted, the
track is split {case i). 1If no detectlions are found for
several frames in a row, the track is dropped (cases 1 and
2). There may also be situations for which a track is split

and then merged (case 3),
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rr-643(3.3) |

Case 1
Track <~
————— ®
| |
Case ¢
Track
- = — — - . .
| | :
Case 3 o / o
e
Track o g °
_______ .______ .
! | i I
Frames N N+1 N+2 N+3

Fig. 3.3. Typical situations encountered in track continuation.




Ambiguities may arise when a number of track files
have overlapping acceptance regions and share the same
detections. This is illustrated in Figure 3.4 for the case
where two tracks share two measurements. Problems of this
kind are similar to the assignment problem in operations
research. The optimal (in the sense of minimum sum of
weighted distances) solution is usually obtained with a
so-called Munkres' algorithm (see [11] ard [15])). 1If one
attempts to resolve this ambiguity at the frame where it is

encountered, this is called immediate conflict resolution.

Since the track formation problem is really a multiple
dimensional assignment problem (eq. (2.5)), a more reliable
decision can be obtained by deferring decisions until further
measurements have been received. This is called deferred

conflict resolution. A tradeoff for these methods is

computation vs performance, We have implemented both

the immediate conflict resolution method and the one frame
deferred conflict resolution method. Later numerical results
will compare the performance of these two methods.

We use Fig. 3.5 to further illustrate the conflict
resolution methods. 1In Fig. 3.5a two track files with
measurements up to the N~1 frame are extrapolated to Nth frame
and found to compete for measurements a and b. To resclve

this conflict immediately is to first form a distance matrix

18
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TR-643(3.4

A Immediate Resolution

Tracks )
)
_4///”’ | | |
Frame # N N+1 N+2

A Delayed Resolution

+ Using Interpolated Estimate to Resolve the
Ambiguity of the Previous Frame

Fig. 3.4. Track continuation ambiguity resolution.

19

e st ..




~ |TR-643(3.5a)

a and b in common

Track # 1 admissible region
n:-_.—-..__,:;.
h a
h /
\\ ,/
N
DES
- ~
s ~
2 i N b
e ~
S ‘e
Frame # N-1 N

Pattern Match fatrix -

Measurements
F] b
= 1 C1a D1b
E
=2 Dy, Dy

Fig. 3.5(a). Illustration of ambiguity resolution technique:
immediate resolution method.
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Track Split c and d¢ in common
Track # 1 at Nth Frame  admissible region
S -~~~ -8 ——————— @
\\\ ’/ b \\ // ¢
\’v\/ \/\//
’ N 7N
2 e ~ ol \\
,/ ~ \b // \\ d
ol -~ — - - - - =~ - ‘e
Frame # N-1 N N+]

Two-Layered Pattern Match Matrix :

For Measurement ¢ For Measurement d
Measurements Measurements
a b a b
1 D1ac D1be D1ad D 1pd
2 D2ac Done D2ag D ad
Fig. 3.5(b). Illustration of amkiguity resolution technigue.:

multiple-layered pattern matching.
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Track # 1
=9 &
a c
P4 b d
) a8 ®
Frame # N-1 N N+1

Pattern Match Matrix (o resolve measurements of N-th
frame using measurements up to
N+1st frame)

Measurements

a b
T 1% X1p
2 XZa XZb

X..: The smallest residual of track i going through

H .
measurement j (of N-th frame) to end at the
N+1st frame.
Fig., 3.5(c). Tllustration of ambiguity resolution technique:

an one-frame deferred resolution method.
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shown in Fig. 3.5a. TFor example, Dy is the weighted
distance between the predicted location of the first track and
measurement a. The "optimum” solution is the pair of Djj's
that gives the minimum sum (see for example, {11)). This is
the "immediate" resolution method.

If one simply splits all tracks and moves to the
N+1st frame (Fig. 2.5b) and assumes that there are again two
measurements (c and d) falling into the common admissible
region, there can be a total of eight possible tracks formed.
The "optimum" approach for this problem is to first form a
"two-layered" matrix with dimension (2x2x2). The entries of
this matrix are the posteriori hypothesis probabilities shown
in (2.4). The "optimum" solution is the pair of entires with
minimum sum. Two factors will have to be considered: (1) the
computation of (2.4) is tedious especially when the numbers of
track files and measurements involved are large and (2) an
efficient algorithm (eguivalent to the Hungarian Method for
searching the optimum solution) has not been found. For the
above reasons, we device a suboptimal procedure which is
particularly efficient when the numbers of track files and
measurements are large, Notice that there are two possible
tracks to go from track file #1 through measurement a of the

Nth frame, namely (1,a,c) and (1,a,d) (see Fig. 3.5c¢c). We

first select a track among these two with the smallest residu-




al. This procedure is repeated for all track files and all
measurements in the Nth frame. The residuals at the Nth frame
(a smoothed residual) of all selected tracks are used to form
the distance matrix (Fig., 3.5c). The final selection is thne
pair of tracks with the minimum sum c¢f entries of the distaace
matrix. This is the one~frame deferred resolution method.
Notice that the one frame deferred method is analogous to the
one~step lagged fixed-lag smoothing.

Notice that the above is attempting to reduce a
N--dimensional (N=3 for this case) assignment problem to a
2--dimensional assignment problem. This procedure although
suboptimal, is straightforward to implement and gives better
performance than the immediate resolution method (see section
4).

The deferred ambiguity resolution method can be imple-
mented in a sliding window fashion, i.e., one uses data in the
past and future for resolving the conflict of the current
frame, This method is also used by the track initiation pro-
cess right after the "Chi-square" test (see Section 3.2 and
Table 3.1). It is referred to as the pattern match test in

Table 3,1,

3.4 Track File Smoothing

The track initiation algorithm described above is a




smoothing algorithm because it uses all past data in a batch
processing mode. All past data will therefore have to be
stored for this purpose. If one exactly implements eq. (2.4}
for track initiation, this process can be recursive although
the number of tracks can grow out of hand rather gquickly. The
track continuation algorithm using the one frame deferred
resolution method is a one step laagged fixed-lag smoothing
process; one is only required to store the immediate past set
of measurements,

In the exovatmospheric BMD application where a
passive optical (Infrared) sensor is used for target
tracking,a conventional recursive filter (e.g., the extended
Kalman filter) may ncot work satisfactorily, [16]). Instead, a
maximum likelihood estimator based batch estimator is found to
give near optimum performance (see [16) and also Appendix R of
this report for the batch algorithm). This estimator however
requires that all measurements be saved. Suppose that all
past measurements have been saved, then one can further edit
track file meésurements when the batch filter is being used to
process these track files. This process is 11lustrated in
Fig. 3.6. A hypothesic test is applicd to measuremenis of a
track file with respect to the estimated trajectory. When a
residual is too large, that particular measurement is rejected

and a new measurement is chosen. This procedure indeed works

Py




TR-643(3.6

‘butyzoows aTT3I Moerl -y': *brg

uonslsy eed

Jjewnsy aes

¥l
L0}e[34107)

FENIE
buiyoes L
UeIsSiZal4

3

s3|14 ¥oeaL pajepdn

$a|i4

%0811

1012|3100

ue3S-ULIS

8biel

sjuawaJinsesy

26




well as will be illustrated in the numerical results section.
3.5 A Partitioned Field of View Implementation

From the discussion of previous sections, it is
clear that the solution tc the multiple target tracking
problem is not a problem reguiring sophisticated mathematical
manipulations, rather involving simple calculations and large
scale data and file management schemes. When it is to be
implemented on a digital computer, the problem of indexing
measurements in a track file can be a real challenge for
programmers.

In this section, we briefly describe an
implementation scheme which is found to be computationally
efficient. The sensor field of view (FOV) is first
partitioned into bins (Figure 3,7). In the exoatmospheric BMD
application, thesce will specifically be bins in azimuth and
elevation, The bin size should not be smaller than the
maximum target motion between two observation and should be at
least a few standard deviations of prediction error. When
measurements of a bin are being track initiated, enly

. measurements in the bin itself and the bordering bins for the
subsequent measurement frame are searched. 1In fthe track
continuation mode, only those track files with their last

measurement residing in the current bin and its immediate

neighbors are used for processing., For the target density
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|TR—643(3.7)

El Bins

Az Bins

® Partition the FOV Windew into Az and El Bins.

e tach Bin May Be Handled By An Independent Processor Which
Initiates Tracks in Its Own Bin And Maintains Track Files
Which Has the Last Measurement Residing In Its Bin
And Immediate Neighbors.

® A Monitor/ Supervisor Processor Handles Track Files Crossing Bin
Boundaries,

Fig. 3.7. Partitjoned field of view implementation.




considered in the BMD application, this method significantly
reduces memory access time. Furthermore, if one stores all
measurements and track files on disk, then the core memory
will only have to be large enough to hold those of a few wuins,

Another advantage of the partitioned field of view
approach is that it is especially'suitable for implementation
with dedicated multiple parallel processors, In this case,
each bin may be handled by an independent processor and a
monitor/supervisor processor can be assigned to handle tracks
crossing bin boundaries.

3.6 Summary
In this section, we have described a multiple target

tracking algorithm with specific applications to ballistic
missile defense, Fecatures of this algorithm are summarized
below.

{1) The track lnitiation process uses a general/parallel
searqh prqcedure which can substantially reduce pro-
cessing time.

{2) The track initiation applied to the exoatmospheric
BMD problem requives 5-7 frames of measurements. It
is applied in a sliding window fashion to handle the
changing scene and crossing traffic problem,

(3) A one frame deferred conflict resolution scheme

is presented for resolving the problem of multiple
track files competing for several measurements.

(4) TIf all or part of the past measurements are being
saved, a concept using a precision filter for
further track file editing is described.




(5) A partitioned field of view implementation scheme,
with potential for multiple processor implementa-
tion, is discussed,.
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V. EXAMPLE

In this section, we illustrate our results using an
example. This example represents a typical high target densi-
ty environment in BMD systems.

The exoatmospheric BMD system concept calls for an
infrared sensor deployed on a probe vehicle flying on a bal-
listic trajectory to observe and track incoming targets. 1In
the example presented in this section, a complex consisting of
approximately 600 targets are being observed with 20 frames of
measurements with ten seconds of time between frames.

The target true angle data at each frame are first
processed by a sensor/signal processor (85P) simulation to
generate simulated angle measurements. This simulation takes
into account 1) target intensily variations, 2) background and
receiver interference, and 3) effects due to limited sensor
resolution, Targets may therefore be detected in one frame
but missed in the next. Several closely spaced targets may
not be mutually resolved and therefore result in fewer number

of measurements than targets. Measurements containing unre-

2

solved targets are usually blased with a standard deviation

It

determined by all targets involved. Some resolved targets may
also contain excessively high measurement errors due to inter-
ference introduced by nearby targets. A detailed description

of these effects can be found in [17].
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Tracking performance is evaluated using a track file
consistency measure. We first illustrate some typical track
files using Table 4.1. The top row gives frame number. The
left column gives track file (TF) identification number. The
entries are target identification numbers. Only 12 frames of
data are shown for illustration. Track file (TF) #100 con-
tains target 20 throughout 12 frames shown. This is a well-
defined, consistant track file. TF #101 contains target 22,
It begins at frame 4 and misses the target at frame 7. TF
#102 and 103 should be examined together. Targets 31 and 32
form an unresolved closely spaced target cluster at frame 1,
2, 3, 4, and 7. When these two targets begin to get resolved
at frame 5, 6, and beyond frame 7, these two track files have
successfully tracked them. TF #'04 and 105 show a similar
situation except that they have failed to consistently track
the CS0 splitting (see frame 8 and beyond). Unresolved
measurements containing more than two targets can also be
found in the threat data examined.

Based upcen the above illustration, we now describe a
“"target criented” scoring (perfourmance evaluation) scheme.

For a given target, we first identify all track files contain-
ing it. For example, using Table 4.1 for target number 31,

one finds that both track fiies 102 and 103 contain this tar-

get, A track file containing this target most often is




TABLE 4.1

ILLUSTRATION OF TYPICAL TRACK FILES

Frame # 1 2 3 4 5 6 7 8 9 10 11U 12
TF # ) 7

100 2 2 2 2 20 20 2 20 2 X 2 2

101 0 0 0 22 22 22 0 22 22 22 22 22

102 3] 31 3l 31 31 31 3] 31 31 31 3 31
32 32 2 32 32

103 31 31 31 31 32 32 3 32 32 32 32 32
32 %2 % R 32

104 26 26 2% 26 26 26 26 2 27 27 a a
27 a a 2 Vdj

105 26 26 26 26 Vi 2l 26 26 % % 26 26
27 27 27 27 2

Entries are target ID's.




assigned to represent this target. 1In Takle 4.1, track files
100, 101, 102, 103, 104, and 105 are assigned to represent
targets 20, 22, 31, 32, 27, and 26, respectively., It is clear
that a track file can sometimes be assigned to more than one
targets because of the closely spaced target effect. A per-
formance for each "target" can then be evaluated using the
assigned track files, Suppose that the number of true occur-
rences of ecach target in Table 4.1 is the same as the table
shows, then we conclude that targets 20, 22, 31, 32, 26, and
27 each meet 100%, 100%, 100%, 100%, 83.33% and 83.33% per-
formance, respectively. Take target 26 as an example. Target
26 has appeared for 12 frames. The track file assigned to

represent target 26 is track file number 105 which contains

target 26 for 10 frames, This means that the performance on
tracking target 26 is 10/12 = B83.,33%.

We apply the above scoring scheme to tracks genera-
ted for the 600 target case described earlier, the results are
shown in Fig. 4.1. The horizontal axis gives performance cri-
terion described in the previous paragraph and the vertical
axis gives the percentage of targets satisfing 2 given crite-
rion. Again using data of Table 4.1 for the purpose of 1illus-
tration, 4 out of 6 targets meet the 100% performance criteri-
on and all targets meet the 80% criterion. We use results

shown in Fig. 4.1 to compare the three tracking algorithms de-
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scribed in the previous section. Clearly, the most
sophisticated algorithm gives the best result. Also notice
that the biggest gain in using a sophisticated algorithm is at
the 190% performance criterion level while the differences at.
the lower criterion region grow smaller. This is because the
precisiop trajectory estimation begins by using track files
produced by the correlation algorithm. 1In order for the
precision estimation to succeed, track files presented by the
correlation algorithm will have to be reasonably
consistent{(e.qg., > 50%). The gain shown in Fig. 4.1 for the
case with track file smoothng is obtained largely by upgrading
the track files satisfying 60% ~ 70% performance criteria.

In Table 4.2, we compare the processing time of
these threc methods. Notice that they are compared on a rela-
tive basis and the total time includes both correlation and

precision tracking.




TABLE 4.2

PROCESSING TIME COMPARISON

CPU Time
(normaiized)
|mmediate Resolution 1
Delayed Resolution 1.2
With Track Fiie 1.8

Smoothing

Notes : Processing time inciudes correlation and
precision estimation.
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V. SUMMARY

In this report, we have described an algorithm for
multiple target trackxing and data correlation in a dense tar-
get environment. Although some of our discussions were cen-
tered around the tracking problem with a passive infrared sen-
sor, the approach represented by this report is applicable in
a general situation.

The significant features of our approach include:
1) the use of a general/parallel search for track initiation
and 2) the one frame deferred ambiguity resolution method. A
partitioned field of view implementation scheme, with poten-
tial for multiple processor implementation, was alsoc discus-

sed.
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APPENDIX A: Some Useful Results in Fitting Polynomials to a
Set of Nolsy Measurements

The techniques of polynomial-fit have found wide
acceptance in applications, In this Appendix, we present a
brief analysis of some polynomial-fit formulas which are
relevent to trajectory tracking and prediction problems. The
polynomial predictor used in the scan-to-scan correlation

algorithm can be derived using these results.
A.1 General Results

Consider a set of polynomials of variable t
(denoting time in our applications) represented by f,(t),
f1(t)s..o,fx(t). Assume that this set of polynomials can
adequately represent a function y(t) in the form of a weighted
linear sum, i.e.. K
.

y(t) = :EJ

~ akfk(t). (A.1)

>

Given a set of noise corrupted discrete time measurements of
y(t)

z(t ) = y(t ) + & i n=l,...,N (A.2)
where §, is an uncorrelated non-stationary zero mean noise
sequence with variance 9,2, The objective is to find a
set of akx's giving the "optimal” estimate of y(t) from
z(tp), n=1,...,N. If the weighted-least-square estimator is

used, then the optimal ax's are those minimizing
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N
! 2
Jd = ;—7 (z(t)) - y(t))) (A.3)
n= n
Let
% f
a = : and £ = ) (A.4)
ay £y

Then the estimate of a, &, is

-1

N
1 T
5 £(tn)£(tn)] [Z .

o}
n n=1

‘_,

z{t ) ﬁ(tn)] (A.5)

é[é

The covariance of &, P, is

SN

N : 0 -1
P = z 2 E(tn) £ (tn) (A.6)
| n= n 3
Consider a special set of polynomials
fa(t) =1
fi(t) =t (A.7)
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. (A.8)

—

-1
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A.2 Results for a Second Order Peolyromial With Uniform Time
Samples and Stationary Noise Sequences

LtnK/K! B 2 V4SO K

and

(1Y
]

1 -1
5 F(tn) (A.10)

a
n

Consider the following conditions

= N, <
1. fo(t) = £,(t) =35

2. Time samples are taken uniformly and t=0
corresponds to the center of the data batch.

This implies

(N-1)T
2

t, = (n-1)T - (A.11)




where T is the intersample spacing.

3. dn = O

Also,

N

2

n=1

1.

Equations

[

Then

3 (3N%-7)
4 (N=2)N(N+2)

-30
T2 (N-1)N(N+1)

and

((n-1)T -

for all n's

(N-1)T
—z )

W%
—
i

i2

TZ(N—i)N(N+l)

0

using the following identities,

T2
T (R=1)N(N+1) (A.12)
0
74 (n- 1) N(w+1) 2
= (38%-7)

240

(A.9) and (A.8) become

=30
T2 (N-2)N(N+2)

720
T4(N-2)(N-1)N(N+1)(N+2)

(A.13)




obtain

A.3

and acceleration,

>
“J
i —

o]
"

-

—

Tz(n—T--(—F—%]—)«)

z(tn)

2
z(tn)/z

-
al 0
12
0 Tzl\,_‘l\\v BT . 1
\ ey I}u(w"l'!)
5 1
z(t )
n=1 n
N N
S pn-1-4821)
&= 2 ) h(tn)

(A.14)

If one repeats the above exercise by choosing K=1, one will

(A.15)

{(A.16)

Applications to Position, Velocity and Accelera-
tion Estimation
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Let porvyr and &y denote the position, velocity,

respectively, of a moving cbject at t=0,
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then its position at an arbitrary time t is

P(t) = p, + vt + 5 at’ (A.17)

If p(th), n=1,..., N denote a set of noisy measurements of
p(tp), the Equations (A.13), (A.14), (A.15), and (A.16) can
be directly applied for estimating py,vo, and ag.

Equation (A.13) and (A.14) correspond to a constant accelera-
tion model while Equations (A.15) and (A.16) corresponds to a
constant velocity model. With pyrv,s and a,, estimates

at time t are obtained by using

B(t) P,
TOR BEREE RN N I (A.18)
a(t) o

where

o(t) = 0 1 t (A.19)
0 0 1
and the covariance becomes
T
P(t) = &(t) P &7 (t) (A.20)

The results for a constant velocity model can be

obtained accordingly.




APPENDIX B:

lihood or
the angle

[16]. 1In

Cn the Multiple and Single Stage Iterative

Least Square Estimators

The batch state estimator
the Weighted Minimum Mean
only tracking application

this appendix, we briefly

based c¢cn the Maximum Like-
Square error criterion for
was discussed in detail in

state this algorithm in

section B.1. It is called a multiple stage iterative al-

gorithm because it attempts to minimize residuals with respect

to several (all) measurements. If one selects to minimize

with respect to the most recent measurement only while holding
the estimate obtained with all previous measurements constant,
it is called the single stage iterative algorithm. This al-
gorithm is discussed in section B.2. Several forms of itera-

tive filters can be found in [18].

B.1 A Multiple Stage Iterative Least Square Estimator

Consider the following state and measurement equa-

tions:

{B.1)

E
]

2, = hix ) + vy k=i, N (B.2)

where x is the state vector, zy is the measurement vector,
and vy is the measurement noise vector with Gaussian dis-

The current

tribution with zero mean and known covariance,




time is denoted by the index k=N, We state the estimator

equations without derivation.

Let ig/N denote the k~th iteration of the estimate
of xN, then
N
T . T
“k+1 _ "k k k™ k-1 "k
Xn/N - En/n Y Payn [ g;; Gy By Ry (2, - hix, N)) (B-3)
N
-1 T T
k - kK" k7 -1 k. .k
Py = 2 Gy H, R 'H G’ (B.4)
where
Gk - ¢k~1ck : n=N-1, N-2 1
n n n+1 ! ’ reect
Gg = I (an identity matrix)
¢§ = linearized transition matrix
o = ihe Jacoblan matrix of f(g“ )
s - ='=s/N
Hk = the Jacobian matrix of h(;k )
n —*=n/N
5§/N = result of integrating £=£(§) backward from
tN to tn using x, = EN/N'
The iteration is terminated when ;kf1 and ;k are suffi-
=N/N =N/N

~

ently close, The notation ii/j denotes the estimate of Xy

based upon data z,,...,2

j.




We make the following remarks:

1) The above algorithm is a realization of the maxi-
mum likelihood estimator with Gaussian measurement
noise process. 1t is well-known that the maximum
likelihood estimate is asymptotically efficient

and Gaussian and approaches the Cramer-Rao bound.

2) The PN/N of (B.4) is an approximate expression
for the covariance of 5N/N' The PN/N evaluated
at the true state is the Cramer-Rao lower bound on

~

the covariance of EN/N' Since 5N/N approaches

the true state with probability one, PN/N also

approaches the Cramer-Rao bound with probability
one.

3) Notice that the ;nverse of Py/N is the Fisher's
information matrix. The invertibility of the
information matrix is tied to the observabilility
of the system, see for example [19].

There are many application areas for this algorithm. One
important application area is track injtiation. Since the
initial covarian¢e and state estimates are not generally
given a priori, the above algorithm can obtain the best
estimates based on the first N measurement vectors and
then proceed to use iN/N and pN/N as the initial state and

covariance estimates, respectively. This method is some-

times referred to as the information matrix approach for

filter initiation.
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B.2 A Single Stage Iterative Least Square Estimator

The above results were given without derivations.
Interested readers can consult [16)] for details., Notice that
the estimator {eqs. (B.3)) is a weighted combination of all
previous measurements. This requires storing of all past
measurements., The well-known extended Kalman filter only re-
gquires storing the most recent measurements. However it may
result in biased estimates. If indeed past measurements can
not be stored, one can extend the result of Section B.1 to a
single stage iterative estimator., It can also be shown that
the extended Kalman filter is only the first iteration of the
single stage iterative estimator.

Let x denote the estimate of Xy based

ZN/N-1
upon all the measurements up to and including 2zy-.9. Upon

receiving the new measurement zy, the optimum estimate at

~

N’ EN/N minimizing

time t is the Xy

3 = (z=h(x ) TRy (2 -hixg)

- - .
* (E‘N/N"1 - l{'N) PN/N—]()_(_N/N_] - iN) (B.5)

where Ry and P are covariances of z,. and XN/N-1' F€S™

N/N-1
pectively. Following similar derivations of [16], one obtains

the following iterative algorithm,




“k+1 “k k k,-1 "k -1 ° .

on = At Payn HnRn ARG F Prne 1 Eyn-17ENN?
(B.6)
-1 T
K o k. -1.k
Paon T Pusn-1 toHnBy By (B.7)
where HE is the Jacobian matrix of h(+). Equation (B.7)
can be re-written as
T ok T -1
kK _ K k K
Pa/n = Bayn-t1 [T~ By OPrnn-1By ¥ B ) HaPyyw-i|  (B-8)

using the Matrix Inversion Lemma.

Notice that if we choose the initial guess for

~ -

iN/N as X

AN/N-1 and stop after the first iteration, we have

obtained the extended Kalman filter equation.
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